Call Us Today! +86-577-8181-0885|sales@z-optics.com

Shop

  • Short Work Distance Pigtailed Fiber Collimators can focus light into a very small spot(several microns to dozens of microns diameter), which is important for some applications like topography, ranging.
  • Normally there exits offset or angle between  Optical axis and mechanic axis of fiber collimator. That causes great insert loss. Collimators can’t be plug and play or rotated in use. The offset and angle between optical axis and mechanic axis of aligned fiber collimator are eliminated with ingenious design and precise assembling. It greatly improves installation efficiency with free adjustment. It also supports rotation of fiber collimator in use and can be used in optical fiber rotary connectors and other products.
  • High temperature pigtailed fiber collimators can operate from -40℃ to +220℃ with special design, technology and materials. Each collimator must be tested for 48h at 220℃ before sending to customers, which ensures the reliability of the device working in a high temperature environment for a long time.
  • Polarization-Maintaining Pigtailed  fiber collimators can ensure the linear polarization direction remains unchanged by using polarization-maintaining fiber. It improves the signal-to-noise ratio in interferometric measurement.
  • Single mode pigtailed fiber collimators are used to transform the laser emitted from fiber into a parallel Gaussian beam by finely positioning the lens to fiber or couple the parallel Gaussian beam into fiber in inverse. It can be used in reflective type and thrubeam type. Normally, a sphere lens or GRIN lens is used in collimator to transform light. It can be divided into specified working distance collimators and wide working distance range collimators.
  • Diffractive optical elements (DOEs) have been designed for use with lasers and high-power lasers. Used as multi-spot beam splitters, beam shapes and beam profile modification, these components provides infinite opportunities in varying application fields. DOES can be designed to perform a variety of simultaneous activities. The laser beam produced by the machine may be formed into any form of intensity pattern, such as dot arrays, lines, circles, arrows, or some other predetermined pattern designed to fit the customer's requirements.
  • Mirror on Prism, an optical component combines the reflective capabilities of a mirror with the light manipulation properties of a prism, offering a versatile solution for optical systems. The Mirror on Prism from Z-optics serves as a bridge between traditional mirror applications and the unique characteristics of prisms. Its design optimizes space utilization while providing the reflective functionality essential for directing light in desired directions. This makes it an ideal component for applications where compactness and precise light control are paramount, such as in periscopes or complex optical setups.
  • Concave Sphere Mirror and Concave Cylindrical Mirror,  are optical components that showcase precision engineering. These mirrors exemplify Z-optics' commitment to delivering superior optical solutions. The Concave Sphere Mirror boasts a precisely curved surface designed to converge incident light, making it ideal for applications requiring focused reflection, such as in telescopes or imaging systems. Z-optics' advanced manufacturing processes ensure the curvature meets exact specifications, providing consistent and reliable optical performance.
  • Ellipse Shape Flat Mirror, a pioneering optical component meticulously crafted by Z-optics Company. This mirror exemplifies Z-optics' unwavering commitment to precision engineering, ingenuity, and delivering superior optical solutions. The Ellipse Shape Flat Mirror stands out with its distinctive elliptical design, adding a touch of aesthetic flair to optical systems. The mirror's substrate is selected for its stability and durability, forming a robust foundation for the specialized coating applied through Z-optics' proprietary processes. This coating not only ensures precise light reflection but also enhances the mirror's visual appeal, making it an ideal choice for applications where functionality meets design. Quality is paramount in the manufacturing process, with each Ellipse Shape Flat Mirror undergoing rigorous inspection to meet Z-optics' exacting standards. This guarantees that the mirror not only provides exceptional optical performance but also maintains its structural and aesthetic integrity over extended use.
  • Laser Line Flat Mirror, an optical component by Z-optics . This mirror exemplifies Z-optics' dedication to precision, innovation, and delivering superior optical solutions. The Laser Line Flat Mirror is designed to meet the demanding requirements of laser systems. The mirror's substrate is chosen for its exceptional stability, providing a robust foundation for the specialized laser line coating applied through Z-optics' proprietary processes. This coating ensures high reflectivity within a specific wavelength range, making it ideal for laser applications requiring precision and efficiency. Z-optics' commitment to quality is evident in the manufacturing process, where each Laser Line Flat Mirror undergoes rigorous inspection to meet the company's exacting standards.
  • Broadband Dielectric Coated Flat Mirror, a optical component by Z-optics Company. This s mirror exemplifies Z-optics' unwavering commitment to precision engineering, innovation, and delivering superior optical solutions. This mirror is its high-quality dielectric coating. This dielectric coating not only ensures broad-spectrum reflectivity but also imparts exceptional durability, making the Broadband Dielectric Coated Flat Mirror a reliable choice for a myriad of optical applications. The mirror's flat substrate, constructed with meticulous attention to detail, serves as a stable base for the dielectric coating, guaranteeing consistent optical performance. Z-optics' stringent quality control measures are applied throughout the manufacturing process, ensuring that each mirror meets the company's exacting standards for precision and reliability.
Go to Top