-
Discover Z-Optics Notch Filters, precision-engineered optical components designed to selectively block specific wavelengths with high accuracy while maintaining excellent transmission outside the blocked band. Our notch filters are ideal for advanced optical systems requiring precise wavelength control, such as laser protection, fluorescence microscopy, Raman spectroscopy, and telecommunications.
-
Dichroic Filter from Z-Optics is a precision optical component designed to selectively transmit and reflect specific wavelengths of light, enhancing color separation and spectral control in various high-performance optical systems. These filters operate using thin-film interference technology and are typically set at a 45° angle of incidence, reflecting undesired wavelengths while transmitting the targeted light spectrum with high efficiency and durability....
-
High-Performance Optical Components by Z-Optics Longpass filters are precision optical components designed to transmit wavelengths longer than a specified cutoff while blocking shorter wavelengths. These filters are essential in many advanced optical systems, providing excellent optical density (OD) and reliable wavelength selectivity over wide spectral ranges. Z-Optics offers a comprehensive range of longpass filters with various cut-on wavelengths, operational wavelength ranges, and standard dimension options to suit diverse industrial and scientific needs.
-
At Z-Optics, our SHORTPASS FILTERS are precision-engineered optical filters designed to transmit wavelengths shorter than a specified cut-off point while effectively blocking longer wavelengths. These filters provide excellent optical density (OD) and broad operational wavelength ranges, making them indispensable components in diverse optical and photonics systems requiring sharp spectral cutoff.
-
At Z-Optics, we offer high-performance bandpass filters with a Full Width at Half Maximum (FWHM) greater than 60 nm, expertly engineered to provide broad spectral selection for applications where wider bandwidths are essential. These filters deliver reliable wavelength isolation with high transmission efficiency, making them ideal for everyday industrial, scientific, and imaging applications that require consistent performance in demanding environments.
-
At Z-Optics, we offer premium-quality bandpass filters with a Full Width at Half Maximum (FWHM) of 50 to 60 nm, engineered to provide excellent spectral selection in a wider bandwidth range. These filters deliver reliable wavelength isolation with high transmission and effective out-of-band blocking, making them ideal for applications where broader spectral control is essential.
-
At Z-Optics, our bandpass filters with FWHM 40~50 nm deliver reliable wavelength selection tailored for applications requiring moderate spectral resolution. These filters offer broad bandwidth suitable for fluorescence imaging, LED-based illumination systems, optical communication, and general light filtering applications — ensuring high transmission and efficient out-of-band rejection for enhanced optical system performance.
-
At Z-Optics, our bandpass filters with FWHM 20–35 nm deliver reliable spectral filtering solutions for applications requiring moderate bandwidth and superior optical performance. Designed for enhanced light transmission and effective out-of-band blocking, these filters are ideal for fluorescence imaging, biomedical diagnostics, laser line isolation, and multispectral sensing technologies.
-
At Z-Optics, our bandpass filters with a Full Width at Half Maximum (FWHM) of 10 to 15 nm are engineered for versatile optical systems requiring moderate spectral selectivity. These filters strike the perfect balance between spectral bandwidth and transmission efficiency, making them ideal for a wide range of scientific, industrial, and medical applications. With excellent out-of-band blocking and stable center wavelength control, they ensure consistent performance and reliable signal isolation.
-
At Z-Optics, we design premium bandpass filters with FWHM 5~6 nm tailored for applications requiring a balance of spectral selectivity and high throughput, including advanced imaging, fluorescence, and laser systems. Our filters deliver excellent wavelength isolation, high peak transmission, and robust out-of-band blocking to enhance signal fidelity and system sensitivity.
-
At Z-Optics, we design precision bandpass filters with a Full Width Half Maximum (FWHM) of 2~3 nm, engineered for applications requiring outstanding spectral selectivity such as LiDAR systems, fluorescence spectroscopy, astronomical observation, and advanced sensor technologies. Our bandpass filters deliver ultra-narrow bandwidths that effectively minimize noise and spectral overlap, enhancing signal clarity even in challenging environments like light-polluted astronomical settings or complex laser setups.
